File: //var/www/tana/frontend/node_modules/locutus/php/_helpers/_bc.js
'use strict';
module.exports = function _bc() {
// eslint-disable-line camelcase
// discuss at: http://locutus.io/php/_helpers/_bc
// original by: lmeyrick (https://sourceforge.net/projects/bcmath-js/)
// improved by: Brett Zamir (http://brett-zamir.me)
// example 1: var $bc = _bc()
// example 1: var $result = $bc.PLUS
// returns 1: '+'
/**
* BC Math Library for Javascript
* Ported from the PHP5 bcmath extension source code,
* which uses the Libbcmath package...
* Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc.
* Copyright (C) 2000 Philip A. Nelson
* The Free Software Foundation, Inc.
* 59 Temple Place, Suite 330
* Boston, MA 02111-1307 USA.
* e-mail: philnelson@acm.org
* us-mail: Philip A. Nelson
* Computer Science Department, 9062
* Western Washington University
* Bellingham, WA 98226-9062
*
* bcmath-js homepage:
*
* This code is covered under the LGPL licence, and can be used however you want :)
* Be kind and share any decent code changes.
*/
/**
* Binary Calculator (BC) Arbitrary Precision Mathematics Lib v0.10 (LGPL)
* Copy of Libbcmath included in PHP5 src
*
* Note: this is just the shared library file and does not include the php-style functions.
* use bcmath{-min}.js for functions like bcadd, bcsub etc.
*
* Feel free to use how-ever you want, just email any bug-fixes/improvements
* to the sourceforge project:
*
*
* Ported from the PHP5 bcmath extension source code,
* which uses the Libbcmath package...
* Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc.
* Copyright (C) 2000 Philip A. Nelson
* The Free Software Foundation, Inc.
* 59 Temple Place, Suite 330
* Boston, MA 02111-1307 USA.
* e-mail: philnelson@acm.org
* us-mail: Philip A. Nelson
* Computer Science Department, 9062
* Western Washington University
* Bellingham, WA 98226-9062
*/
var Libbcmath = {
PLUS: '+',
MINUS: '-',
BASE: 10,
// must be 10 (for now)
scale: 0,
// default scale
/**
* Basic number structure
*/
bc_num: function bc_num() {
this.n_sign = null; // sign
this.n_len = null; // (int) The number of digits before the decimal point.
this.n_scale = null; // (int) The number of digits after the decimal point.
// this.n_refs = null; // (int) The number of pointers to this number.
// this.n_text = null; // ?? Linked list for available list.
this.n_value = null; // array as value, where 1.23 = [1,2,3]
this.toString = function () {
var r, tmp;
tmp = this.n_value.join('');
// add minus sign (if applicable) then add the integer part
r = (this.n_sign === Libbcmath.PLUS ? '' : this.n_sign) + tmp.substr(0, this.n_len);
// if decimal places, add a . and the decimal part
if (this.n_scale > 0) {
r += '.' + tmp.substr(this.n_len, this.n_scale);
}
return r;
};
},
/**
* Base add function
*
// Here is the full add routine that takes care of negative numbers.
// N1 is added to N2 and the result placed into RESULT. SCALE_MIN
// is the minimum scale for the result.
*
* @param {bc_num} n1
* @param {bc_num} n2
* @param {int} scaleMin
* @return bc_num
*/
bc_add: function bc_add(n1, n2, scaleMin) {
var sum, cmpRes, resScale;
if (n1.n_sign === n2.n_sign) {
sum = Libbcmath._bc_do_add(n1, n2, scaleMin);
sum.n_sign = n1.n_sign;
} else {
// subtraction must be done.
cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false); // Compare magnitudes.
switch (cmpRes) {
case -1:
// n1 is less than n2, subtract n1 from n2.
sum = Libbcmath._bc_do_sub(n2, n1, scaleMin);
sum.n_sign = n2.n_sign;
break;
case 0:
// They are equal! return zero with the correct scale!
resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale));
sum = Libbcmath.bc_new_num(1, resScale);
Libbcmath.memset(sum.n_value, 0, 0, resScale + 1);
break;
case 1:
// n2 is less than n1, subtract n2 from n1.
sum = Libbcmath._bc_do_sub(n1, n2, scaleMin);
sum.n_sign = n1.n_sign;
}
}
return sum;
},
/**
* This is the "user callable" routine to compare numbers N1 and N2.
* @param {bc_num} n1
* @param {bc_num} n2
* @return int -1, 0, 1 (n1 < n2, ===, n1 > n2)
*/
bc_compare: function bc_compare(n1, n2) {
return Libbcmath._bc_do_compare(n1, n2, true, false);
},
_one_mult: function _one_mult(num, nPtr, size, digit, result, rPtr) {
var carry, value; // int
var nptr, rptr; // int pointers
if (digit === 0) {
Libbcmath.memset(result, 0, 0, size); // memset (result, 0, size);
} else {
if (digit === 1) {
Libbcmath.memcpy(result, rPtr, num, nPtr, size); // memcpy (result, num, size);
} else {
// Initialize
nptr = nPtr + size - 1; // nptr = (unsigned char *) (num+size-1);
rptr = rPtr + size - 1; // rptr = (unsigned char *) (result+size-1);
carry = 0;
while (size-- > 0) {
value = num[nptr--] * digit + carry; // value = *nptr-- * digit + carry;
result[rptr--] = value % Libbcmath.BASE; // @CHECK cint //*rptr-- = value % BASE;
carry = Math.floor(value / Libbcmath.BASE); // @CHECK cint //carry = value / BASE;
}
if (carry !== 0) {
result[rptr] = carry;
}
}
}
},
bc_divide: function bc_divide(n1, n2, scale) {
// var quot // bc_num return
var qval; // bc_num
var num1, num2; // string
var ptr1, ptr2, n2ptr, qptr; // int pointers
var scale1, val; // int
var len1, len2, scale2, qdigits, extra, count; // int
var qdig, qguess, borrow, carry; // int
var mval; // string
var zero; // char
var norm; // int
// var ptrs // return object from one_mul
// Test for divide by zero. (return failure)
if (Libbcmath.bc_is_zero(n2)) {
return -1;
}
// Test for zero divide by anything (return zero)
if (Libbcmath.bc_is_zero(n1)) {
return Libbcmath.bc_new_num(1, scale);
}
/* Test for n1 equals n2 (return 1 as n1 nor n2 are zero)
if (Libbcmath.bc_compare(n1, n2, Libbcmath.MAX(n1.n_scale, n2.n_scale)) === 0) {
quot=Libbcmath.bc_new_num(1, scale);
quot.n_value[0] = 1;
return quot;
}
*/
// Test for divide by 1. If it is we must truncate.
// @todo: check where scale > 0 too.. can't see why not
// (ie bc_is_zero - add bc_is_one function)
if (n2.n_scale === 0) {
if (n2.n_len === 1 && n2.n_value[0] === 1) {
qval = Libbcmath.bc_new_num(n1.n_len, scale); // qval = bc_new_num (n1->n_len, scale);
qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS;
// memset (&qval->n_value[n1->n_len],0,scale):
Libbcmath.memset(qval.n_value, n1.n_len, 0, scale);
// memcpy (qval->n_value, n1->n_value, n1->n_len + MIN(n1->n_scale,scale)):
Libbcmath.memcpy(qval.n_value, 0, n1.n_value, 0, n1.n_len + Libbcmath.MIN(n1.n_scale, scale));
// can we return here? not in c src, but can't see why-not.
// return qval;
}
}
/* Set up the divide. Move the decimal point on n1 by n2's scale.
Remember, zeros on the end of num2 are wasted effort for dividing. */
scale2 = n2.n_scale; // scale2 = n2->n_scale;
n2ptr = n2.n_len + scale2 - 1; // n2ptr = (unsigned char *) n2.n_value+n2.n_len+scale2-1;
while (scale2 > 0 && n2.n_value[n2ptr--] === 0) {
scale2--;
}
len1 = n1.n_len + scale2;
scale1 = n1.n_scale - scale2;
if (scale1 < scale) {
extra = scale - scale1;
} else {
extra = 0;
}
// num1 = (unsigned char *) safe_emalloc (1, n1.n_len+n1.n_scale, extra+2):
num1 = Libbcmath.safe_emalloc(1, n1.n_len + n1.n_scale, extra + 2);
if (num1 === null) {
Libbcmath.bc_out_of_memory();
}
// memset (num1, 0, n1->n_len+n1->n_scale+extra+2):
Libbcmath.memset(num1, 0, 0, n1.n_len + n1.n_scale + extra + 2);
// memcpy (num1+1, n1.n_value, n1.n_len+n1.n_scale):
Libbcmath.memcpy(num1, 1, n1.n_value, 0, n1.n_len + n1.n_scale);
// len2 = n2->n_len + scale2:
len2 = n2.n_len + scale2;
// num2 = (unsigned char *) safe_emalloc (1, len2, 1):
num2 = Libbcmath.safe_emalloc(1, len2, 1);
if (num2 === null) {
Libbcmath.bc_out_of_memory();
}
// memcpy (num2, n2.n_value, len2):
Libbcmath.memcpy(num2, 0, n2.n_value, 0, len2);
// *(num2+len2) = 0:
num2[len2] = 0;
// n2ptr = num2:
n2ptr = 0;
// while (*n2ptr === 0):
while (num2[n2ptr] === 0) {
n2ptr++;
len2--;
}
// Calculate the number of quotient digits.
if (len2 > len1 + scale) {
qdigits = scale + 1;
zero = true;
} else {
zero = false;
if (len2 > len1) {
qdigits = scale + 1; // One for the zero integer part.
} else {
qdigits = len1 - len2 + scale + 1;
}
}
// Allocate and zero the storage for the quotient.
// qval = bc_new_num (qdigits-scale,scale);
qval = Libbcmath.bc_new_num(qdigits - scale, scale);
// memset (qval->n_value, 0, qdigits);
Libbcmath.memset(qval.n_value, 0, 0, qdigits);
// Allocate storage for the temporary storage mval.
// mval = (unsigned char *) safe_emalloc (1, len2, 1);
mval = Libbcmath.safe_emalloc(1, len2, 1);
if (mval === null) {
Libbcmath.bc_out_of_memory();
}
// Now for the full divide algorithm.
if (!zero) {
// Normalize
// norm = Libbcmath.cint(10 / (Libbcmath.cint(n2.n_value[n2ptr]) + 1));
// norm = 10 / ((int)*n2ptr + 1)
norm = Math.floor(10 / (n2.n_value[n2ptr] + 1)); // norm = 10 / ((int)*n2ptr + 1);
if (norm !== 1) {
// Libbcmath._one_mult(num1, len1+scale1+extra+1, norm, num1);
Libbcmath._one_mult(num1, 0, len1 + scale1 + extra + 1, norm, num1, 0);
// Libbcmath._one_mult(n2ptr, len2, norm, n2ptr);
Libbcmath._one_mult(n2.n_value, n2ptr, len2, norm, n2.n_value, n2ptr);
// @todo: Check: Is the pointer affected by the call? if so,
// maybe need to adjust points on return?
}
// Initialize divide loop.
qdig = 0;
if (len2 > len1) {
qptr = len2 - len1; // qptr = (unsigned char *) qval.n_value+len2-len1;
} else {
qptr = 0; // qptr = (unsigned char *) qval.n_value;
}
// Loop
while (qdig <= len1 + scale - len2) {
// Calculate the quotient digit guess.
if (n2.n_value[n2ptr] === num1[qdig]) {
qguess = 9;
} else {
qguess = Math.floor((num1[qdig] * 10 + num1[qdig + 1]) / n2.n_value[n2ptr]);
}
// Test qguess.
if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) {
qguess--;
// And again.
if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) {
qguess--;
}
}
// Multiply and subtract.
borrow = 0;
if (qguess !== 0) {
mval[0] = 0; //* mval = 0; // @CHECK is this to fix ptr2 < 0?
// _one_mult (n2ptr, len2, qguess, mval+1); // @CHECK
Libbcmath._one_mult(n2.n_value, n2ptr, len2, qguess, mval, 1);
ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2;
ptr2 = len2; // (unsigned char *) mval+len2;
// @todo: CHECK: Does a negative pointer return null?
// ptr2 can be < 0 here as ptr1 = len2, thus count < len2+1 will always fail ?
for (count = 0; count < len2 + 1; count++) {
if (ptr2 < 0) {
// val = Libbcmath.cint(num1[ptr1]) - 0 - borrow;
// val = (int) *ptr1 - (int) *ptr2-- - borrow;
val = num1[ptr1] - 0 - borrow; // val = (int) *ptr1 - (int) *ptr2-- - borrow;
} else {
// val = Libbcmath.cint(num1[ptr1]) - Libbcmath.cint(mval[ptr2--]) - borrow;
// val = (int) *ptr1 - (int) *ptr2-- - borrow;
// val = (int) *ptr1 - (int) *ptr2-- - borrow;
val = num1[ptr1] - mval[ptr2--] - borrow;
}
if (val < 0) {
val += 10;
borrow = 1;
} else {
borrow = 0;
}
num1[ptr1--] = val;
}
}
// Test for negative result.
if (borrow === 1) {
qguess--;
ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2;
ptr2 = len2 - 1; // (unsigned char *) n2ptr+len2-1;
carry = 0;
for (count = 0; count < len2; count++) {
if (ptr2 < 0) {
// val = Libbcmath.cint(num1[ptr1]) + 0 + carry;
// val = (int) *ptr1 + (int) *ptr2-- + carry;
// val = (int) *ptr1 + (int) *ptr2-- + carry;
val = num1[ptr1] + 0 + carry;
} else {
// val = Libbcmath.cint(num1[ptr1]) + Libbcmath.cint(n2.n_value[ptr2--]) + carry;
// val = (int) *ptr1 + (int) *ptr2-- + carry;
// val = (int) *ptr1 + (int) *ptr2-- + carry;
val = num1[ptr1] + n2.n_value[ptr2--] + carry;
}
if (val > 9) {
val -= 10;
carry = 1;
} else {
carry = 0;
}
num1[ptr1--] = val; //* ptr1-- = val;
}
if (carry === 1) {
// num1[ptr1] = Libbcmath.cint((num1[ptr1] + 1) % 10);
// *ptr1 = (*ptr1 + 1) % 10; // @CHECK
// *ptr1 = (*ptr1 + 1) % 10; // @CHECK
num1[ptr1] = (num1[ptr1] + 1) % 10;
}
}
// We now know the quotient digit.
qval.n_value[qptr++] = qguess; //* qptr++ = qguess;
qdig++;
}
}
// Clean up and return the number.
qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS;
if (Libbcmath.bc_is_zero(qval)) {
qval.n_sign = Libbcmath.PLUS;
}
Libbcmath._bc_rm_leading_zeros(qval);
return qval;
// return 0; // Everything is OK.
},
MUL_BASE_DIGITS: 80,
MUL_SMALL_DIGITS: 80 / 4,
// #define MUL_SMALL_DIGITS mul_base_digits/4
/* The multiply routine. N2 times N1 is put int PROD with the scale of
the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
*/
/**
* @param n1 bc_num
* @param n2 bc_num
* @param scale [int] optional
*/
bc_multiply: function bc_multiply(n1, n2, scale) {
var pval; // bc_num
var len1, len2; // int
var fullScale, prodScale; // int
// Initialize things.
len1 = n1.n_len + n1.n_scale;
len2 = n2.n_len + n2.n_scale;
fullScale = n1.n_scale + n2.n_scale;
prodScale = Libbcmath.MIN(fullScale, Libbcmath.MAX(scale, Libbcmath.MAX(n1.n_scale, n2.n_scale)));
// pval = Libbcmath.bc_init_num(); // allow pass by ref
// Do the multiply
pval = Libbcmath._bc_rec_mul(n1, len1, n2, len2, fullScale);
// Assign to prod and clean up the number.
pval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS;
// pval.n_value = pval.nPtr;
pval.n_len = len2 + len1 + 1 - fullScale;
pval.n_scale = prodScale;
Libbcmath._bc_rm_leading_zeros(pval);
if (Libbcmath.bc_is_zero(pval)) {
pval.n_sign = Libbcmath.PLUS;
}
// bc_free_num (prod);
return pval;
},
new_sub_num: function new_sub_num(length, scale, value) {
var temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap
temp.n_sign = Libbcmath.PLUS;
temp.n_len = length;
temp.n_scale = scale;
temp.n_value = value;
return temp;
},
_bc_simp_mul: function _bc_simp_mul(n1, n1len, n2, n2len, fullScale) {
var prod; // bc_num
var n1ptr, n2ptr, pvptr; // char *n1ptr, *n2ptr, *pvptr;
var n1end, n2end; // char *n1end, *n2end; // To the end of n1 and n2.
var indx, sum, prodlen; // int indx, sum, prodlen;
prodlen = n1len + n2len + 1;
prod = Libbcmath.bc_new_num(prodlen, 0);
n1end = n1len - 1; // (char *) (n1->n_value + n1len - 1);
n2end = n2len - 1; // (char *) (n2->n_value + n2len - 1);
pvptr = prodlen - 1; // (char *) ((*prod)->n_value + prodlen - 1);
sum = 0;
// Here is the loop...
for (indx = 0; indx < prodlen - 1; indx++) {
// (char *) (n1end - MAX(0, indx-n2len+1));
n1ptr = n1end - Libbcmath.MAX(0, indx - n2len + 1);
// (char *) (n2end - MIN(indx, n2len-1));
n2ptr = n2end - Libbcmath.MIN(indx, n2len - 1);
while (n1ptr >= 0 && n2ptr <= n2end) {
// sum += *n1ptr-- * *n2ptr++;
sum += n1.n_value[n1ptr--] * n2.n_value[n2ptr++];
}
//* pvptr-- = sum % BASE;
prod.n_value[pvptr--] = Math.floor(sum % Libbcmath.BASE);
sum = Math.floor(sum / Libbcmath.BASE); // sum = sum / BASE;
}
prod.n_value[pvptr] = sum; //* pvptr = sum;
return prod;
},
/* A special adder/subtractor for the recursive divide and conquer
multiply algorithm. Note: if sub is called, accum must
be larger that what is being subtracted. Also, accum and val
must have n_scale = 0. (e.g. they must look like integers. *) */
_bc_shift_addsub: function _bc_shift_addsub(accum, val, shift, sub) {
var accp, valp; // signed char *accp, *valp;
var count, carry; // int count, carry;
count = val.n_len;
if (val.n_value[0] === 0) {
count--;
}
// assert (accum->n_len+accum->n_scale >= shift+count);
if (accum.n_len + accum.n_scale < shift + count) {
throw new Error('len + scale < shift + count'); // ?? I think that's what assert does :)
}
// Set up pointers and others
// (signed char *)(accum->n_value + accum->n_len + accum->n_scale - shift - 1);
accp = accum.n_len + accum.n_scale - shift - 1;
valp = val.n_len = 1; // (signed char *)(val->n_value + val->n_len - 1);
carry = 0;
if (sub) {
// Subtraction, carry is really borrow.
while (count--) {
accum.n_value[accp] -= val.n_value[valp--] + carry; //* accp -= *valp-- + carry;
if (accum.n_value[accp] < 0) {
// if (*accp < 0)
carry = 1;
accum.n_value[accp--] += Libbcmath.BASE; //* accp-- += BASE;
} else {
carry = 0;
accp--;
}
}
while (carry) {
accum.n_value[accp] -= carry; //* accp -= carry;
if (accum.n_value[accp] < 0) {
// if (*accp < 0)
accum.n_value[accp--] += Libbcmath.BASE; // *accp-- += BASE;
} else {
carry = 0;
}
}
} else {
// Addition
while (count--) {
accum.n_value[accp] += val.n_value[valp--] + carry; //* accp += *valp-- + carry;
if (accum.n_value[accp] > Libbcmath.BASE - 1) {
// if (*accp > (BASE-1))
carry = 1;
accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE;
} else {
carry = 0;
accp--;
}
}
while (carry) {
accum.n_value[accp] += carry; //* accp += carry;
if (accum.n_value[accp] > Libbcmath.BASE - 1) {
// if (*accp > (BASE-1))
accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE;
} else {
carry = 0;
}
}
}
return true; // accum is the pass-by-reference return
},
/* Recursive divide and conquer multiply algorithm.
based on
Let u = u0 + u1*(b^n)
Let v = v0 + v1*(b^n)
Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0
B is the base of storage, number of digits in u1,u0 close to equal.
*/
_bc_rec_mul: function _bc_rec_mul(u, ulen, v, vlen, fullScale) {
var prod; // @return
var u0, u1, v0, v1; // bc_num
// var u0len,
// var v0len // int
var m1, m2, m3, d1, d2; // bc_num
var n, prodlen, m1zero; // int
var d1len, d2len; // int
// Base case?
if (ulen + vlen < Libbcmath.MUL_BASE_DIGITS || ulen < Libbcmath.MUL_SMALL_DIGITS || vlen < Libbcmath.MUL_SMALL_DIGITS) {
return Libbcmath._bc_simp_mul(u, ulen, v, vlen, fullScale);
}
// Calculate n -- the u and v split point in digits.
n = Math.floor((Libbcmath.MAX(ulen, vlen) + 1) / 2);
// Split u and v.
if (ulen < n) {
u1 = Libbcmath.bc_init_num(); // u1 = bc_copy_num (BCG(_zero_));
u0 = Libbcmath.new_sub_num(ulen, 0, u.n_value);
} else {
u1 = Libbcmath.new_sub_num(ulen - n, 0, u.n_value);
u0 = Libbcmath.new_sub_num(n, 0, u.n_value + ulen - n);
}
if (vlen < n) {
v1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
v0 = Libbcmath.new_sub_num(vlen, 0, v.n_value);
} else {
v1 = Libbcmath.new_sub_num(vlen - n, 0, v.n_value);
v0 = Libbcmath.new_sub_num(n, 0, v.n_value + vlen - n);
}
Libbcmath._bc_rm_leading_zeros(u1);
Libbcmath._bc_rm_leading_zeros(u0);
// var u0len = u0.n_len
Libbcmath._bc_rm_leading_zeros(v1);
Libbcmath._bc_rm_leading_zeros(v0);
// var v0len = v0.n_len
m1zero = Libbcmath.bc_is_zero(u1) || Libbcmath.bc_is_zero(v1);
// Calculate sub results ...
d1 = Libbcmath.bc_init_num(); // needed?
d2 = Libbcmath.bc_init_num(); // needed?
d1 = Libbcmath.bc_sub(u1, u0, 0);
d1len = d1.n_len;
d2 = Libbcmath.bc_sub(v0, v1, 0);
d2len = d2.n_len;
// Do recursive multiplies and shifted adds.
if (m1zero) {
m1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
} else {
// m1 = Libbcmath.bc_init_num(); //allow pass-by-ref
m1 = Libbcmath._bc_rec_mul(u1, u1.n_len, v1, v1.n_len, 0);
}
if (Libbcmath.bc_is_zero(d1) || Libbcmath.bc_is_zero(d2)) {
m2 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
} else {
// m2 = Libbcmath.bc_init_num(); //allow pass-by-ref
m2 = Libbcmath._bc_rec_mul(d1, d1len, d2, d2len, 0);
}
if (Libbcmath.bc_is_zero(u0) || Libbcmath.bc_is_zero(v0)) {
m3 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
} else {
// m3 = Libbcmath.bc_init_num(); //allow pass-by-ref
m3 = Libbcmath._bc_rec_mul(u0, u0.n_len, v0, v0.n_len, 0);
}
// Initialize product
prodlen = ulen + vlen + 1;
prod = Libbcmath.bc_new_num(prodlen, 0);
if (!m1zero) {
Libbcmath._bc_shift_addsub(prod, m1, 2 * n, 0);
Libbcmath._bc_shift_addsub(prod, m1, n, 0);
}
Libbcmath._bc_shift_addsub(prod, m3, n, 0);
Libbcmath._bc_shift_addsub(prod, m3, 0, 0);
Libbcmath._bc_shift_addsub(prod, m2, n, d1.n_sign !== d2.n_sign);
return prod;
// Now clean up!
// bc_free_num (&u1);
// bc_free_num (&u0);
// bc_free_num (&v1);
// bc_free_num (&m1);
// bc_free_num (&v0);
// bc_free_num (&m2);
// bc_free_num (&m3);
// bc_free_num (&d1);
// bc_free_num (&d2);
},
/**
*
* @param {bc_num} n1
* @param {bc_num} n2
* @param {boolean} useSign
* @param {boolean} ignoreLast
* @return -1, 0, 1 (see bc_compare)
*/
_bc_do_compare: function _bc_do_compare(n1, n2, useSign, ignoreLast) {
var n1ptr, n2ptr; // int
var count; // int
// First, compare signs.
if (useSign && n1.n_sign !== n2.n_sign) {
if (n1.n_sign === Libbcmath.PLUS) {
return 1; // Positive N1 > Negative N2
} else {
return -1; // Negative N1 < Positive N1
}
}
// Now compare the magnitude.
if (n1.n_len !== n2.n_len) {
if (n1.n_len > n2.n_len) {
// Magnitude of n1 > n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return 1;
} else {
return -1;
}
} else {
// Magnitude of n1 < n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return -1;
} else {
return 1;
}
}
}
/* If we get here, they have the same number of integer digits.
check the integer part and the equal length part of the fraction. */
count = n1.n_len + Math.min(n1.n_scale, n2.n_scale);
n1ptr = 0;
n2ptr = 0;
while (count > 0 && n1.n_value[n1ptr] === n2.n_value[n2ptr]) {
n1ptr++;
n2ptr++;
count--;
}
if (ignoreLast && count === 1 && n1.n_scale === n2.n_scale) {
return 0;
}
if (count !== 0) {
if (n1.n_value[n1ptr] > n2.n_value[n2ptr]) {
// Magnitude of n1 > n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return 1;
} else {
return -1;
}
} else {
// Magnitude of n1 < n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return -1;
} else {
return 1;
}
}
}
// They are equal up to the last part of the equal part of the fraction.
if (n1.n_scale !== n2.n_scale) {
if (n1.n_scale > n2.n_scale) {
for (count = n1.n_scale - n2.n_scale; count > 0; count--) {
if (n1.n_value[n1ptr++] !== 0) {
// Magnitude of n1 > n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return 1;
} else {
return -1;
}
}
}
} else {
for (count = n2.n_scale - n1.n_scale; count > 0; count--) {
if (n2.n_value[n2ptr++] !== 0) {
// Magnitude of n1 < n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return -1;
} else {
return 1;
}
}
}
}
}
// They must be equal!
return 0;
},
/* Here is the full subtract routine that takes care of negative numbers.
N2 is subtracted from N1 and the result placed in RESULT. SCALE_MIN
is the minimum scale for the result. */
bc_sub: function bc_sub(n1, n2, scaleMin) {
var diff; // bc_num
var cmpRes, resScale; // int
if (n1.n_sign !== n2.n_sign) {
diff = Libbcmath._bc_do_add(n1, n2, scaleMin);
diff.n_sign = n1.n_sign;
} else {
// subtraction must be done.
// Compare magnitudes.
cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false);
switch (cmpRes) {
case -1:
// n1 is less than n2, subtract n1 from n2.
diff = Libbcmath._bc_do_sub(n2, n1, scaleMin);
diff.n_sign = n2.n_sign === Libbcmath.PLUS ? Libbcmath.MINUS : Libbcmath.PLUS;
break;
case 0:
// They are equal! return zero!
resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale));
diff = Libbcmath.bc_new_num(1, resScale);
Libbcmath.memset(diff.n_value, 0, 0, resScale + 1);
break;
case 1:
// n2 is less than n1, subtract n2 from n1.
diff = Libbcmath._bc_do_sub(n1, n2, scaleMin);
diff.n_sign = n1.n_sign;
break;
}
}
// Clean up and return.
// bc_free_num (result);
//* result = diff;
return diff;
},
_bc_do_add: function _bc_do_add(n1, n2, scaleMin) {
var sum; // bc_num
var sumScale, sumDigits; // int
var n1ptr, n2ptr, sumptr; // int
var carry, n1bytes, n2bytes; // int
var tmp; // int
// Prepare sum.
sumScale = Libbcmath.MAX(n1.n_scale, n2.n_scale);
sumDigits = Libbcmath.MAX(n1.n_len, n2.n_len) + 1;
sum = Libbcmath.bc_new_num(sumDigits, Libbcmath.MAX(sumScale, scaleMin));
// Start with the fraction part. Initialize the pointers.
n1bytes = n1.n_scale;
n2bytes = n2.n_scale;
n1ptr = n1.n_len + n1bytes - 1;
n2ptr = n2.n_len + n2bytes - 1;
sumptr = sumScale + sumDigits - 1;
// Add the fraction part. First copy the longer fraction
// (ie when adding 1.2345 to 1 we know .2345 is correct already) .
if (n1bytes !== n2bytes) {
if (n1bytes > n2bytes) {
// n1 has more dp then n2
while (n1bytes > n2bytes) {
sum.n_value[sumptr--] = n1.n_value[n1ptr--];
// *sumptr-- = *n1ptr--;
n1bytes--;
}
} else {
// n2 has more dp then n1
while (n2bytes > n1bytes) {
sum.n_value[sumptr--] = n2.n_value[n2ptr--];
// *sumptr-- = *n2ptr--;
n2bytes--;
}
}
}
// Now add the remaining fraction part and equal size integer parts.
n1bytes += n1.n_len;
n2bytes += n2.n_len;
carry = 0;
while (n1bytes > 0 && n2bytes > 0) {
// add the two numbers together
tmp = n1.n_value[n1ptr--] + n2.n_value[n2ptr--] + carry;
// *sumptr = *n1ptr-- + *n2ptr-- + carry;
// check if they are >= 10 (impossible to be more then 18)
if (tmp >= Libbcmath.BASE) {
carry = 1;
tmp -= Libbcmath.BASE; // yep, subtract 10, add a carry
} else {
carry = 0;
}
sum.n_value[sumptr] = tmp;
sumptr--;
n1bytes--;
n2bytes--;
}
// Now add carry the [rest of the] longer integer part.
if (n1bytes === 0) {
// n2 is a bigger number then n1
while (n2bytes-- > 0) {
tmp = n2.n_value[n2ptr--] + carry;
// *sumptr = *n2ptr-- + carry;
if (tmp >= Libbcmath.BASE) {
carry = 1;
tmp -= Libbcmath.BASE;
} else {
carry = 0;
}
sum.n_value[sumptr--] = tmp;
}
} else {
// n1 is bigger then n2..
while (n1bytes-- > 0) {
tmp = n1.n_value[n1ptr--] + carry;
// *sumptr = *n1ptr-- + carry;
if (tmp >= Libbcmath.BASE) {
carry = 1;
tmp -= Libbcmath.BASE;
} else {
carry = 0;
}
sum.n_value[sumptr--] = tmp;
}
}
// Set final carry.
if (carry === 1) {
sum.n_value[sumptr] += 1;
// *sumptr += 1;
}
// Adjust sum and return.
Libbcmath._bc_rm_leading_zeros(sum);
return sum;
},
/**
* Perform a subtraction
*
* Perform subtraction: N2 is subtracted from N1 and the value is
* returned. The signs of N1 and N2 are ignored. Also, N1 is
* assumed to be larger than N2. SCALE_MIN is the minimum scale
* of the result.
*
* Basic school maths says to subtract 2 numbers..
* 1. make them the same length, the decimal places, and the integer part
* 2. start from the right and subtract the two numbers from each other
* 3. if the sum of the 2 numbers < 0, carry -1 to the next set and add 10
* (ie 18 > carry 1 becomes 8). thus 0.9 + 0.9 = 1.8
*
* @param {bc_num} n1
* @param {bc_num} n2
* @param {int} scaleMin
* @return bc_num
*/
_bc_do_sub: function _bc_do_sub(n1, n2, scaleMin) {
var diff; // bc_num
var diffScale, diffLen; // int
var minScale, minLen; // int
var n1ptr, n2ptr, diffptr; // int
var borrow, count, val; // int
// Allocate temporary storage.
diffLen = Libbcmath.MAX(n1.n_len, n2.n_len);
diffScale = Libbcmath.MAX(n1.n_scale, n2.n_scale);
minLen = Libbcmath.MIN(n1.n_len, n2.n_len);
minScale = Libbcmath.MIN(n1.n_scale, n2.n_scale);
diff = Libbcmath.bc_new_num(diffLen, Libbcmath.MAX(diffScale, scaleMin));
/* Not needed?
// Zero extra digits made by scaleMin.
if (scaleMin > diffScale) {
diffptr = (char *) (diff->n_value + diffLen + diffScale);
for (count = scaleMin - diffScale; count > 0; count--) {
*diffptr++ = 0;
}
}
*/
// Initialize the subtract.
n1ptr = n1.n_len + n1.n_scale - 1;
n2ptr = n2.n_len + n2.n_scale - 1;
diffptr = diffLen + diffScale - 1;
// Subtract the numbers.
borrow = 0;
// Take care of the longer scaled number.
if (n1.n_scale !== minScale) {
// n1 has the longer scale
for (count = n1.n_scale - minScale; count > 0; count--) {
diff.n_value[diffptr--] = n1.n_value[n1ptr--];
// *diffptr-- = *n1ptr--;
}
} else {
// n2 has the longer scale
for (count = n2.n_scale - minScale; count > 0; count--) {
val = 0 - n2.n_value[n2ptr--] - borrow;
// val = - *n2ptr-- - borrow;
if (val < 0) {
val += Libbcmath.BASE;
borrow = 1;
} else {
borrow = 0;
}
diff.n_value[diffptr--] = val;
//* diffptr-- = val;
}
}
// Now do the equal length scale and integer parts.
for (count = 0; count < minLen + minScale; count++) {
val = n1.n_value[n1ptr--] - n2.n_value[n2ptr--] - borrow;
// val = *n1ptr-- - *n2ptr-- - borrow;
if (val < 0) {
val += Libbcmath.BASE;
borrow = 1;
} else {
borrow = 0;
}
diff.n_value[diffptr--] = val;
//* diffptr-- = val;
}
// If n1 has more digits then n2, we now do that subtract.
if (diffLen !== minLen) {
for (count = diffLen - minLen; count > 0; count--) {
val = n1.n_value[n1ptr--] - borrow;
// val = *n1ptr-- - borrow;
if (val < 0) {
val += Libbcmath.BASE;
borrow = 1;
} else {
borrow = 0;
}
diff.n_value[diffptr--] = val;
}
}
// Clean up and return.
Libbcmath._bc_rm_leading_zeros(diff);
return diff;
},
/**
*
* @param {int} length
* @param {int} scale
* @return bc_num
*/
bc_new_num: function bc_new_num(length, scale) {
var temp; // bc_num
temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap
temp.n_sign = Libbcmath.PLUS;
temp.n_len = length;
temp.n_scale = scale;
temp.n_value = Libbcmath.safe_emalloc(1, length + scale, 0);
Libbcmath.memset(temp.n_value, 0, 0, length + scale);
return temp;
},
safe_emalloc: function safe_emalloc(size, len, extra) {
return Array(size * len + extra);
},
/**
* Create a new number
*/
bc_init_num: function bc_init_num() {
return new Libbcmath.bc_new_num(1, 0); // eslint-disable-line new-cap
},
_bc_rm_leading_zeros: function _bc_rm_leading_zeros(num) {
// We can move n_value to point to the first non zero digit!
while (num.n_value[0] === 0 && num.n_len > 1) {
num.n_value.shift();
num.n_len--;
}
},
/**
* Convert to bc_num detecting scale
*/
php_str2num: function php_str2num(str) {
var p;
p = str.indexOf('.');
if (p === -1) {
return Libbcmath.bc_str2num(str, 0);
} else {
return Libbcmath.bc_str2num(str, str.length - p);
}
},
CH_VAL: function CH_VAL(c) {
return c - '0'; // ??
},
BCD_CHAR: function BCD_CHAR(d) {
return d + '0'; // ??
},
isdigit: function isdigit(c) {
return isNaN(parseInt(c, 10));
},
bc_str2num: function bc_str2num(strIn, scale) {
var str, num, ptr, digits, strscale, zeroInt, nptr;
// remove any non-expected characters
// Check for valid number and count digits.
str = strIn.split(''); // convert to array
ptr = 0; // str
digits = 0;
strscale = 0;
zeroInt = false;
if (str[ptr] === '+' || str[ptr] === '-') {
ptr++; // Sign
}
while (str[ptr] === '0') {
ptr++; // Skip leading zeros.
}
// while (Libbcmath.isdigit(str[ptr])) {
while (str[ptr] % 1 === 0) {
// Libbcmath.isdigit(str[ptr])) {
ptr++;
digits++; // digits
}
if (str[ptr] === '.') {
ptr++; // decimal point
}
// while (Libbcmath.isdigit(str[ptr])) {
while (str[ptr] % 1 === 0) {
// Libbcmath.isdigit(str[ptr])) {
ptr++;
strscale++; // digits
}
if (str[ptr] || digits + strscale === 0) {
// invalid number, return 0
return Libbcmath.bc_init_num();
//* num = bc_copy_num (BCG(_zero_));
}
// Adjust numbers and allocate storage and initialize fields.
strscale = Libbcmath.MIN(strscale, scale);
if (digits === 0) {
zeroInt = true;
digits = 1;
}
num = Libbcmath.bc_new_num(digits, strscale);
// Build the whole number.
ptr = 0; // str
if (str[ptr] === '-') {
num.n_sign = Libbcmath.MINUS;
// (*num)->n_sign = MINUS;
ptr++;
} else {
num.n_sign = Libbcmath.PLUS;
// (*num)->n_sign = PLUS;
if (str[ptr] === '+') {
ptr++;
}
}
while (str[ptr] === '0') {
ptr++; // Skip leading zeros.
}
nptr = 0; // (*num)->n_value;
if (zeroInt) {
num.n_value[nptr++] = 0;
digits = 0;
}
for (; digits > 0; digits--) {
num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]);
//* nptr++ = CH_VAL(*ptr++);
}
// Build the fractional part.
if (strscale > 0) {
ptr++; // skip the decimal point!
for (; strscale > 0; strscale--) {
num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]);
}
}
return num;
},
cint: function cint(v) {
if (typeof v === 'undefined') {
v = 0;
}
var x = parseInt(v, 10);
if (isNaN(x)) {
x = 0;
}
return x;
},
/**
* Basic min function
* @param {int} a
* @param {int} b
*/
MIN: function MIN(a, b) {
return a > b ? b : a;
},
/**
* Basic max function
* @param {int} a
* @param {int} b
*/
MAX: function MAX(a, b) {
return a > b ? a : b;
},
/**
* Basic odd function
* @param {int} a
*/
ODD: function ODD(a) {
return a & 1;
},
/**
* replicate c function
* @param {array} r return (by reference)
* @param {int} ptr
* @param {string} chr char to fill
* @param {int} len length to fill
*/
memset: function memset(r, ptr, chr, len) {
var i;
for (i = 0; i < len; i++) {
r[ptr + i] = chr;
}
},
/**
* Replacement c function
* Obviously can't work like c does, so we've added an "offset"
* param so you could do memcpy(dest+1, src, len) as memcpy(dest, 1, src, len)
* Also only works on arrays
*/
memcpy: function memcpy(dest, ptr, src, srcptr, len) {
var i;
for (i = 0; i < len; i++) {
dest[ptr + i] = src[srcptr + i];
}
return true;
},
/**
* Determine if the number specified is zero or not
* @param {bc_num} num number to check
* @return boolean true when zero, false when not zero.
*/
bc_is_zero: function bc_is_zero(num) {
var count; // int
var nptr; // int
// Quick check.
// if (num === BCG(_zero_)) return TRUE;
// Initialize
count = num.n_len + num.n_scale;
nptr = 0; // num->n_value;
// The check
while (count > 0 && num.n_value[nptr++] === 0) {
count--;
}
if (count !== 0) {
return false;
} else {
return true;
}
},
bc_out_of_memory: function bc_out_of_memory() {
throw new Error('(BC) Out of memory');
}
};
return Libbcmath;
};
//# sourceMappingURL=_bc.js.map